Question:
If points (t, 2t), (−2, 6) and (3, 1) are collinear, then t =
(a) $\frac{3}{4}$
(b) $\frac{4}{3}$
(c) $\frac{5}{3}$
(d) $\frac{3}{5}$
Solution:
We have three collinear points $\mathrm{A}(t, 2 t) ; \mathrm{B}(-2,6) ; \mathrm{C}(3,1)$.
In general if $\mathrm{A}\left(x_{1}, y_{1}\right) ; \mathrm{B}\left(x_{2}, y_{2}\right) ; \mathrm{C}\left(x_{3}, y_{3}\right)$ are collinear then,
$x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
So,
$t(6-1)-2(1-2 t)+3(2 t-6)=0$
So,
$5 t+4 t+6 t-2-18=0$
So,
$15 t=20$
Therefore,
$t=\frac{4}{3}$
So the answer is (b)