Question:
If $p(x)$ be a polynomial of degree three that has a local maximum value 8 at $x=1$ and a local minimum value 4 at $x$ $=2 ;$ then $p(0)$ is equal to :
Correct Option: , 2
Solution:
Let $p^{\prime}(x)=\lambda(x-1)(x-2)$ where $\lambda>0$
$p(x)=\lambda\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right]+C$
Since $p(1)=8 \Rightarrow \lambda\left(\frac{1}{3}-\frac{3}{2}+2\right)+C=8$
$\Rightarrow \frac{5 \lambda}{6}+C=8$ ...........(1)
Also, $p(2)=4 \Rightarrow \lambda\left(\frac{8}{3}-6+4\right)+C=4$
$\Rightarrow \frac{2}{3} \lambda+C=4$ .................(2)
From (1) and (2), we get
$C=-12$ and $\lambda=24$
$\Rightarrow p(0)=0+C=-12$