If $P$ and $Q$ are two statements, then which of the following compound statement is a tautology?
Correct Option:
$((P \rightarrow Q) \wedge \sim Q)$
$\equiv(\sim P \vee Q) \wedge \sim Q$
$\equiv(\sim P \wedge \sim Q) \vee(Q \wedge \sim Q)$
$\equiv \sim P \wedge \sim Q$
(A) $(P \wedge \sim Q) \rightarrow Q$
LHS of all the options are some i.e.
$\equiv \sim(\sim P \wedge \sim Q) \vee Q$
$\equiv(P \vee Q) \vee Q \neq$ tautology
(B) $(\sim P \wedge \sim Q) \rightarrow \sim P$
$\equiv \sim(\sim P \wedge \sim Q) \vee \sim P$
$\equiv(P \vee Q) \vee \sim P$
(C) $(\sim \mathrm{P} \wedge \sim \mathrm{Q}) \rightarrow \mathrm{P}$
$\equiv(P \vee Q) \vee P \neq$ Tautology
(D) $(\sim P \wedge \sim Q) \rightarrow(P \wedge Q)$
$\equiv(P \vee Q) \vee(P \wedge Q) \neq$ Tautology
Aliter: