If P (A|B) > P (A), then which of the following is correct:

Question:

If $P(A \mid B)>P(A)$, then which of the following is correct:

(A) $P(B \mid A)

(B) $P(A \cap B)

(C) $P(B \mid A)>P(B)$

(D) $P(B \mid A)=P(B)$

Solution:

$P(A \mid B)>P(A)$

$\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}>\mathrm{P}(\mathrm{A})$

$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})>\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

$\Rightarrow \frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}>\mathrm{P}(\mathrm{B})$

$\Rightarrow \mathrm{P}(\mathrm{B} \mid \mathrm{A})>\mathrm{P}(\mathrm{B})$c

Thus, the correct answer is C.

Leave a comment