If one zero of the quadratic polynomial f(x)

Question:

If one zero of the quadratic polynomial $1(x)=4 x^{2}-8 k x-9$ is negative of the other, find the value of $k$.

Solution:

Since $\alpha$ and $-\alpha$ are the zeros of the quadratic polynomial $f(x)=4 x^{2}-8 k x-9$

$\alpha-\alpha=0$

$\frac{-\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=0$

$\frac{-8 k}{4}=0$

$-8 k=0 \times 4$

$-8 k=0$

$k=\frac{0}{-8}$

$k=0$

Hence, the Value of $k$ is 0 .

Leave a comment