Question:
If one root of the equation $4 x^{2}-2 x+(\lambda-4)=0$ be the reciprocal of the other, then $\lambda=$
(a) 8
(b) −8
(c) 4
(d) −4
Solution:
Let $\alpha$ and $\beta$ be the roots of quadratic equation $4 x^{2}-2 x+(\lambda-4)=0$ in such a way that $\alpha=\frac{1}{\beta}$
Here, $a=4, b=-2$ and,$c=(\lambda-4)$
Then, according to question sum of the roots
$\alpha+\beta=\frac{-b}{a}$
$\frac{1}{\beta}+\beta=\frac{-(-2)}{4}$
$\frac{1+\beta^{2}}{\beta}=\frac{1}{2}$
$2+2 \beta^{2}=\beta$
$2+2 \beta^{2}=\beta$
$2 \beta^{2}-\beta+2=0$
And the product of the roots
$\alpha \cdot \beta=\frac{c}{a}$
$1=\frac{\lambda-4}{4}$
$\lambda-4=4$
$\lambda=4+4$
$=8$
Therefore, value of $\lambda=8$
Thus, the correct answer is