If one root of

Question:

If one root of $5 x^{2}+13 x+k=0$ be the reciprocal of the other root, then the value of $k$ is

(a) 0
(b) 1
(c) 2
(d) 5

Solution:

(d) 5

Let the roots of the equation $\left(5 x^{2}+13 x+k=0\right)$ be $\alpha$ and $\frac{1}{\alpha}$.

$\therefore$ Product of the roots $=\frac{c}{a}$

$\Rightarrow \alpha \times \frac{1}{\alpha}=\frac{k}{5}$

$\Rightarrow 1=\frac{k}{5}$

$\Rightarrow k=5$

 

Leave a comment