If one of the zeroes of the quadratic

Question:

If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is $-3$, then the value of $k$ is

(a) $\frac{4}{3}$

(b) $\frac{-4}{3}$

(c) $\frac{2}{3}$

(d) $\frac{-2}{3}$

Solution:

(a) Given that, one of the zeroes of the quadratic polynomial say p(x) = (k- 1)x2 + kx + 1

is $-3$, then $\quad p(-3)=0$

$\Rightarrow \quad(k-1)(-3)^{2}+k(-3)+1=0$

$\Rightarrow \quad 9(k-1)-3 k+1=0$

$\Rightarrow \quad 9 k-9-3 k+1=0$

$\Rightarrow \quad 6 k-8=0$

$\therefore$ $k=4 / 3$

Leave a comment