Question:
If one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero,
the product of then other two zeroes is
(a) $\frac{-c}{a}$
(b) $\frac{c}{a}$
(c) 0
(d) $\frac{-b}{a}$
Solution:
(b) Let p(x) =ax3 + bx2 + cx + d
Given that, one of the zeroes of the cubic polynomial p(x) is zero.
Let α, β and γ are the zeroes of cubic polynomial p(x), where a = 0.
We know that,
Sum of product of two zeroes at a time $=\frac{C}{a}$
$\Rightarrow \quad \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$
$\Rightarrow \quad 0 \times \beta+\beta \gamma+\gamma \times 0=\frac{c}{a}$ $[\because \alpha=0$, given $]$
$\Rightarrow \quad 0+\beta \gamma+0=\frac{c}{a}$
$\Rightarrow \quad \beta \gamma=\frac{c}{a}$
Hence, product of other two zeroes $=\frac{c}{a}$