If one of the zeroes of the cubic

Question:

If one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero,

the product of then other two zeroes is

(a) $\frac{-c}{a}$

(b) $\frac{c}{a}$

(c) 0

(d) $\frac{-b}{a}$

Solution:

(b) Let p(x) =ax3 + bx2 + cx + d

Given that, one of the zeroes of the cubic polynomial p(x) is zero.

Let α, β and γ are the zeroes of cubic polynomial p(x), where a = 0.

We know that,

Sum of product of two zeroes at a time $=\frac{C}{a}$

$\Rightarrow \quad \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$

$\Rightarrow \quad 0 \times \beta+\beta \gamma+\gamma \times 0=\frac{c}{a}$ $[\because \alpha=0$, given $]$

$\Rightarrow \quad 0+\beta \gamma+0=\frac{c}{a}$ 

$\Rightarrow \quad \beta \gamma=\frac{c}{a}$

Hence, product of other two zeroes $=\frac{c}{a}$

Leave a comment