If one member of a Pythagorean

Question:

If one member of a Pythagorean triplet is $2 \mathrm{~m}$, then the other two members are

(a) $m, m^{2}+1$

(b) $m^{2}+1, m^{2}-1$

(c) $m^{2}, m^{2}-1$

(a) $m, m^{2}+1$

(b) $m^{2}+1, m^{2}-1$

(c) $m^{2}, m^{2}-1$

(d) $m^{2}, m+1$

Solution:

$2 m=4$

$\Rightarrow \quad m=2$

$m^{2}+1=2^{2}+1=4+1=5$

and $\quad m^{2}-1=2^{2}-1=4-1=3$

Now. $\quad 3^{2}+4^{2}=5^{2}$

$\Rightarrow \quad 9+16=25 .$

$\Rightarrow \quad 25=25$

So, 3,4 and 5 are pythagorean triplets.

Leave a comment