Question:
If one A.M., A and two geometric means G1 and G2 inserted between any two positive numbers, show that
$\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}=2 A$
Solution:
Let the two positive numbers be $a$ and $b$.
$a, A$ and $b$ are in A.P.
$\therefore 2 A=a+b$ ....(i)
Also, $a, G_{1}, G_{2}$ and $b$ are in G.P.
$\therefore r=\left(\frac{b}{a}\right)^{\frac{1}{3}}$
Also, $G_{1}=a r$ and $G_{2}=a r^{2}$ ...(ii)
Now, LHS $=\frac{G_{1}{ }^{2}}{G_{2}}+\frac{G_{2}{ }^{2}}{G_{1}}$
$=\frac{(a r)^{2}}{a r^{2}}+\frac{\left(a r^{2}\right)^{2}}{a r} \quad[$ Using (ii) $]$
$=a+a r^{3}$
$=a+a\left(\left(\frac{b}{a}\right)^{\frac{1}{3}}\right)^{3}$
$=a+a\left(\frac{b}{a}\right)$
$=a+b$
$=2 A$
$=\mathrm{RHS} \quad[U \operatorname{sing}(\mathrm{i})]$