Question:
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
[Hint: From equation using nCr / nCr + 1 and nCr / nCr – 1 to find the value of r.]
Solution:
We know that,
nCr
$=\frac{n !}{r !(n-r) !}$
According to the question,
nCr – 1 =36,
nCr =84,
nCr +1=126
$\frac{C_{r}^{n}}{C_{r+1}^{n}}=\frac{84}{126}$
$\Rightarrow \frac{\frac{\mathrm{n} !}{\mathrm{r} !(\mathrm{n}-\mathrm{r}) !}}{\frac{\mathrm{n} !}{(\mathrm{r}+1) !(\mathrm{n}-\mathrm{r}-1) !}}=\frac{84}{126}=\frac{2}{3}$
2n-2r=3r+3
⇒2n – 3 = 5r … (i)
$\frac{C_{r}^{n}}{C_{r-1}^{n}}=\frac{84}{36}$
$\Rightarrow \frac{\frac{n !}{r !(n-r) !}}{\frac{n !}{(r-1) !(n-r+1) !}}=\frac{7}{3}$
=3n-3r+3=7r
3n+3=10r … (ii)
From (i) and (ii),
We get,
2(2n – 3) = 3n+3
4n – 3n – 6 – 3=0
n=9
And r=3
Now
rC2=3C2 = 3!/2!
=3