Question:
If mth term of an A.P. is n and nth term is m, then write its pth term.
Solution:
Given:
$a_{m}=n$
$\Rightarrow a+(m-1) d=n \quad \ldots(1)$
$a_{n}=m$
$\Rightarrow a+(n-1) d=m \quad \ldots .(2)$
Solving equations $(1)$ and $(2)$, we get:
$d=-1$
$a=n+m-1$
pth term:
$a_{p}=a+(p-1) d$
$=n+m-1+(p-1)(-1)$
$=n+m-p$
Hence, the pth term is $n+m-p$.