Question:
If loge 4 = 1.3868, then loge 4.01 =
(a) $1.3968$
(b) $1.3898$
(c) $1.3893$
(d) none of these
Solution:
(c) $1.3893$
Consider the function $y=f(x)=\log _{e} x$.
Let:
$x=4$
$x+\Delta x=4.01$
$\Rightarrow \Delta x=0.01$
For $x=4$
$\begin{aligned} y &=\log _{e} 4=1.3868 \\ y &=\log _{e} x \end{aligned}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=4}=\frac{1}{4}$
$\Rightarrow \Delta y=d y=\frac{d y}{d x} d x=\frac{1}{4} \times 0.01=0.0025$
$\therefore \log _{e} 4.01=y+\Delta y=1.3893$