If $\left(x^{3}+a x^{2}+b x+6\right)$ has $(x-2)$ as a factor and leaves a remainder 3 when divided by
Question.
If $\left(x^{3}+a x^{2}+b x+6\right)$ has $(x-2)$ as a factor and leaves a remainder 3 when divided by $(x-3)$, find the values of $a$ and $b$.
If $\left(x^{3}+a x^{2}+b x+6\right)$ has $(x-2)$ as a factor and leaves a remainder 3 when divided by $(x-3)$, find the values of $a$ and $b$.
Solution:
Let:
$f(x)=x^{3}+a x^{2}+b x+6$
$(x-2)$ is a factor of $f(x)=x^{3}+a x^{2}+b x+6$
$\Rightarrow f(2)=0$
$\Rightarrow 2^{3}+a \times 2^{2}+b \times 2+6=0$
$\Rightarrow 14+4 a+2 b=0$
$\Rightarrow 4 a+2 b=-14$
$\Rightarrow 2 a+b=-7 \quad \ldots(1)$
Now,
$x-3=0 \Rightarrow x=3$
By the factor theorem, we can say:
When $f(x)$ will be divided by $(x-3), 3$ will be its remainder.
$\Rightarrow f(3)=3$
Now,
$f(3)=3^{3}+a \times 3^{2}+b \times 3+6$
$=(27+9 a+3 b+6)$
$=33+9 a+3 b$
Thus, we have:
$f(3)=3$
$\Rightarrow 33+9 a+3 b=3$
$\Rightarrow 9 a+3 b=-30$
$\Rightarrow 3 a+b=-10 \quad \ldots(2)$
Subtracting (1) from (2), we get:
$a=-3$
By putting the value of $a$ in (1), we get the value of $b$, i.e., $-1$.
$\therefore a=-3$ and $b=-1$
Let:
$f(x)=x^{3}+a x^{2}+b x+6$
$(x-2)$ is a factor of $f(x)=x^{3}+a x^{2}+b x+6$
$\Rightarrow f(2)=0$
$\Rightarrow 2^{3}+a \times 2^{2}+b \times 2+6=0$
$\Rightarrow 14+4 a+2 b=0$
$\Rightarrow 4 a+2 b=-14$
$\Rightarrow 2 a+b=-7 \quad \ldots(1)$
Now,
$x-3=0 \Rightarrow x=3$
By the factor theorem, we can say:
When $f(x)$ will be divided by $(x-3), 3$ will be its remainder.
$\Rightarrow f(3)=3$
Now,
$f(3)=3^{3}+a \times 3^{2}+b \times 3+6$
$=(27+9 a+3 b+6)$
$=33+9 a+3 b$
Thus, we have:
$f(3)=3$
$\Rightarrow 33+9 a+3 b=3$
$\Rightarrow 9 a+3 b=-30$
$\Rightarrow 3 a+b=-10 \quad \ldots(2)$
Subtracting (1) from (2), we get:
$a=-3$
By putting the value of $a$ in (1), we get the value of $b$, i.e., $-1$.
$\therefore a=-3$ and $b=-1$