If $left(rac{x}{3}+1, y-rac{2}{3}ight)=left(rac{5}{3}, rac{1}{3}ight)$, find the values of $x$ and $y$.
Question:
If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$, find the values of $x$ and $y$.
Solution:
It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$.
Since the ordered pairs are equal, the corresponding elements will also be equal.
Therefore, $\frac{x}{3}+1=\frac{5}{3}$ and $y-\frac{2}{3}=\frac{1}{3}$
$\frac{x}{3}+1=\frac{5}{3}$
$\Rightarrow \frac{x}{3}=\frac{5}{3}-1 \quad \Rightarrow y-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \frac{x}{3}=\frac{2}{3} \quad \Rightarrow y=\frac{1}{3}+\frac{2}{3}$
$\Rightarrow x=2$
$\therefore x=2$ and $y=1$