If $\theta$ is the angle between two vectors $\vec{a}$ and $\vec{b}$, then $\vec{a} \cdot \vec{b} \geq 0$ only when
(A) $0<\theta<\frac{\pi}{2}$
(B) $0 \leq \theta \leq \frac{\pi}{2}$
(C) $0<\theta<\pi$
(D) $0 \leq \theta \leq \pi$
Let $\theta$ be the angle between two vectors $\vec{a}$ and $\vec{b}$.
Then, without loss of generality, $\vec{a}$ and $\vec{b}$ are non-zero vectors so that $|\vec{a}|$ and $|\vec{b}|$ are positive.
It is known that $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$.
$\therefore \vec{a} \cdot \vec{b} \geq 0$
$\Rightarrow|\vec{a}| \vec{b} \mid \cos \theta \geq 0$
$\Rightarrow \cos \theta \geq 0$ $[|\vec{a}|$ and $|\vec{b}|$ are positive $]$
$\Rightarrow 0 \leq \theta \leq \frac{\pi}{2}$
Hence, $\vec{a} \cdot \vec{b} \geq 0$ when $0 \leq \theta \leq \frac{\pi}{2}$.
The correct answer is B.