If $\theta$ is the angle between any two vectors $\vec{a}$ and $\vec{b}$, then $|\vec{a} \vec{b}|=|\vec{a} \times \vec{b}|$ when $\theta$ isequal to
(A) 0
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) $\pi$
Let $\theta$ be the angle between two vectors $\vec{a}$ and $\vec{b}$.
Then, without loss of generality, $\vec{a}$ and $\vec{b}$ are non-zero vectors, so that $|\vec{a}|$ and $|\vec{b}|$ are positive.
$|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$
$\Rightarrow|\vec{a}||\vec{b}| \cos \theta=|\vec{a}||\vec{b}| \sin \theta$ $[|\vec{a}|$ and $|\vec{b}|$ are positive $]$
$\Rightarrow \tan \theta=1$
$\Rightarrow \theta=\frac{\pi}{4}$
Hence, $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when $\theta$ isequal to $\frac{\pi}{4}$.
The correct answer is B.