If $\theta$ is an acute angle such that $\cos \theta=\frac{3}{5}$, then $\frac{\sin \theta \tan \theta-1}{2 \tan ^{2} \theta}=$
(a) $\frac{16}{625}$
(b) $\frac{1}{36}$
(C) $\frac{3}{160}$
(d) $\frac{160}{3}$
Given: $\cos \theta=\frac{3}{5}$ and we need to find the value of the following expression
$\frac{\sin \theta \tan \theta-1}{2 \tan ^{2} \theta}$
We know that: $\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$
$\Rightarrow$ Base $=3$
$\Rightarrow$ Hypotenuse $=5$
$\Rightarrow$ Perpendicular $=\sqrt{(\text { Hypotenuse })^{2}-(\text { Base })^{2}}$
$\Rightarrow$ Perpendicular $=\sqrt{25-9}$
$\Rightarrow$ Perpendicular $=4$
Since $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$
and $\tan \theta=\frac{\text { Perpendicular }}{\text { Base }}$
So we find,
$\frac{\sin \theta \tan \theta-1}{2 \tan ^{2} \theta}$
$=\frac{\frac{4}{5} \times \frac{4}{3}-1}{2 \times\left(\frac{4}{3}\right)^{2}}$
$=\frac{\frac{1}{15}}{\frac{32}{9}}$
$=\frac{3}{160}$
Hence the correct option is $(c)$