Question:
If $\theta$ is a positive acute such that $\sec \theta=\operatorname{cosec} 60^{\circ}$, find the value of $2 \cos ^{2} \theta-1$.
Solution:
We have: $\sec \theta=\operatorname{cosec} 60^{\circ}$ where $\theta$ is positive acute angle
$\Rightarrow \operatorname{cosec}\left(90^{\circ}-\theta\right)=\operatorname{cosec} 60^{\circ}$
$\Rightarrow 90^{\circ}-\theta=60^{\circ}$
$\Rightarrow \theta=30^{\circ}$
Now we have to find $2 \cos ^{2} \theta-1$
Put $\theta=30^{\circ}$
$=2 \times \cos ^{2} 30^{\circ}-1$
$=2 \times\left(\frac{\sqrt{3}}{2}\right)^{2}-1$
$=2 \times \frac{3}{4}-1$
$=\frac{1}{2}$
Hence the value of $2 \cos ^{2} \theta-1$ is $\frac{1}{2}$