If in ΔABC and ΔDEF,

Question:

If in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar, when

(a) ∠B = ∠E                                              

(b) ∠A = ∠D

(c)∠B = ∠D                                               

(d) ∠A = ∠F

Solution:

(c) Given, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EDF}$,

$\frac{A B}{D E}=\frac{B C}{F D}$

By converse of basic proportionality theorem,

$\triangle A B C \sim \triangle E D F$

Then, $\angle B=\angle D, \angle A=\angle E$

and $\angle C=\angle F$

Leave a comment