If in a rectangle, the length is increased and breadth reduced each by 2 units, the area is reduced by 28 square units.
If in a rectangle, the length is increased and breadth reduced each by 2 units, the area is reduced by 28 square units. If, however the length is reduced by 1 unit and the breadth increased by 2 units, the area increases by 33 square units. Find the area of the rectangle.
Let the length and breadth of the rectangle be and units respectively
Then, area of rectangle square units
If length is increased and breadth reduced each by units, then the area is reduced by square units
$\begin{aligned} &(x+2)(y-2)=x y-28 \\ \Rightarrow & x y-2 x+2 y-4=x y-28 \\ \Rightarrow &-2 x+2 y-4+28=0 \\ \Rightarrow &-2 x+2 y+24=0 \\ \Rightarrow & 2 x-2 y-24=0 \end{aligned}$
Therefore,
Then the length is reduced by unit and breadth is increased by units then the area is increased by square units
$(x-1)(y+2)=x y+33$
$\Rightarrow x y+2 x-y-2=x y+33$
$\Rightarrow 2 x-y-2-33=0$
$\Rightarrow 2 x-y-35=0$
Therefore, $2 x-y-35=0 \quad \ldots \ldots(i i)$
Thus we get the following system of linear equation
$2 x-2 y-24=0$
$2 x-y-35=0$
By using cross multiplication, we have
$\frac{x}{(-2 \times-35)-(-1 \times-24)}=\frac{y}{(2 \times-35)-(2 \times-24)}=\frac{1}{(2 \times-1)-(2 \times-2)}$
$\frac{x}{70-24}=\frac{-y}{-70+48}=\frac{1}{-2+4}$
$\frac{x}{46}=\frac{-y}{-22}=\frac{1}{2}$
$x=\frac{46}{2}$
$x=23$
and
$y=\frac{22}{2}$
$y=11$
The length of rectangle is units.
The breadth of rectangle is units.
Area of rectangle =lengthbreadth,
$=x \times y$
$=23 \times 11$
$=253$ square units
Hence, the area of rectangle is square units