if g(x)

Question:

If $g(x)=x^{2}+x-1$ and $(g \circ f)(x)=4 x^{2}-10 x+5$, then $f\left(\frac{5}{4}\right)$ is equal to:

  1. (1) $\frac{3}{2}$

  2. (2) $-\frac{1}{2}$

  3. (3) $\frac{1}{2}$

  4. (4) $-\frac{3}{2}$


Correct Option: , 2

Solution:

$(g \circ f)(x)=g(f(x))=f^{2}(x)+f(x)-1$

$g\left(f\left(\frac{5}{4}\right)\right)=4\left(\frac{5}{4}\right)^{2}-10 \cdot \frac{5}{4}+5=-\frac{5}{4}$ $\left[\because g(f(x))=4 x^{2}-10 x+5\right]$

$g\left(f\left(\frac{5}{4}\right)\right)=f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)-1$

$-\frac{5}{4}=f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)-1$

$f^{2}\left(\frac{5}{4}\right)+f\left(\frac{5}{4}\right)+\frac{1}{4}=0$

$\left(f\left(\frac{5}{4}\right)+\frac{1}{2}\right)^{2}=0$

$t\left(\frac{5}{4}\right)=-\frac{1}{2}$

Leave a comment