If from Lagrange's mean value theorem, we have

Question:

If from Lagrange's mean value theorem, we have

$f^{\prime}\left(x_{1}\right)=\frac{f^{\prime}(b)-f(a)}{b-a}$, then

(a) $a

(b) $a \leq x_{1}

(c) $a

 

(d) $a \leq x_{1} \leq b$

Solution:

(c) $a

In the Lagrange's mean value theorem, $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

So, if there is $x_{1}$ such that $f^{\prime}\left(x_{1}\right)=\frac{f(b)-f(a)}{b-a}$, then $x_{1} \in(a, b)$.

$\Rightarrow a

Leave a comment