Question:
If from an external point B of a circle with centre 0, two tangents BC and BD are drawn such that ∠DBC = 120°, prove that BC + BD = B0 i.e., BO = 2
BC.
Solution:
Two tangents BD and BC are drawn from an external point B.
To prove $\quad B O=2 B C$
Given, $\angle D B C=120^{\circ}$
Join $O C, O D$ and $B O$.
Since, $B C$ and $B D$ are tangents.
$\therefore \quad O C \perp B C$ and $O D \perp B D$
We know, $O B$ is a angle bisector of $\angle D B C$.
$\therefore$ $\angle O B C=\angle D B O=60^{\circ}$
In right angled $\triangle O B C$, $\cos 60^{\circ}=\frac{B C}{O B}$
$\Rightarrow$ $\frac{1}{2}=\frac{B C}{O B}$
$\Rightarrow$ $O B=2 B C$
Also, $B C=B D$
[tangent drawn from internal point to circle are equal]
$\therefore$ $O B=B C+B C$
$\Rightarrow$ $O B=B C+B D$