If for the matrix, $\mathrm{A}=\left[\begin{array}{cc}1 & -\alpha \\ \alpha & \beta\end{array}\right], \mathrm{AA}^{\mathrm{T}}=\mathrm{I}_{2}$, then
the value of $\alpha^{4}+\beta^{4}$ is :
Correct Option: , 4
$\mathrm{A}=\left[\begin{array}{cc}1 & -\alpha \\ \alpha & \beta\end{array}\right] \quad \mathrm{AA}^{\mathrm{T}}=\mathrm{I}_{2}$
$\Rightarrow\left[\begin{array}{cc}1 & -\alpha \\ \alpha & \beta\end{array}\right]\left[\begin{array}{cc}1 & \alpha \\ -\alpha & \beta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1+\alpha^{2} & \alpha-\alpha \beta \\ \alpha-\alpha \beta & \alpha^{2}+\beta^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \alpha^{2}=0 \& \beta^{2}=1$
$\therefore \alpha^{4}+\beta^{4}=1$