Question:
If for real values of $x, \cos \theta=x+\frac{1}{x}$, then
(a) θ is an acute angle
(b) θ is a right angle
(c) θ is an obtuse angle
(d) No value of θ is possible
Solution:
Given for real value of $x, \cos \theta=x+\frac{1}{x}$
i. e $\cos \theta=\frac{x^{2}+1}{x}$
$\Rightarrow x \cos \theta=x^{2}+1$
$\Rightarrow x^{2}-x \cos \theta+1=0$
for $x \in \mathbb{R}$ i. e roots should be real
i. e $b^{2}-4 a c \geq 0$
i. e $\cos ^{2} \theta-4(1)(1) \geq 0$
i. e $\cos ^{2} \theta \geq 4$
which is not possible $\quad(\because-1 \leq \cos \theta \leq 1)$
∴ No such value of θ is possible
Hence, the correct answer is option D.