If $f(x)=x|x|$, then $f(-1)=$____________
$|x|= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}$
$\therefore f(x)=x|x|= \begin{cases}x^{2}, & x \geq 0 \\ -x^{2}, & x<0\end{cases}$
Now,
$L f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{f(-1-h)-f(-1)}{-h}$
$\Rightarrow L f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{-(-1-h)^{2}-\left[-(-1)^{2}\right]}{-h}$
$\Rightarrow L f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{-\left(1+2 h+h^{2}\right)+1}{-h}$
$\Rightarrow L f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{-\left(2 h+h^{2}\right)}{-h}$
$\Rightarrow L f^{\prime}(-1)=\lim _{h \rightarrow 0}(2+h)$
$\Rightarrow L f^{\prime}(-1)=2+0=2$
Also,
$R f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}$
$\Rightarrow R f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{-(-1+h)^{2}-\left[-(-1)^{2}\right]}{h}$
$\Rightarrow R f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{-\left(1-2 h+h^{2}\right)+1}{h}$
$\Rightarrow R f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{-\left(-2 h+h^{2}\right)}{h}$
$\Rightarrow R f^{\prime}(-1)=\lim _{h \rightarrow 0}(2-h)$
$\Rightarrow R f^{\prime}(-1)=2-0=2$
So, $L f^{\prime}(-1)=R f^{\prime}(-1)=2$
$\therefore f^{\prime}(-1)=2$
If $f(x)=x|x|$, then $f(-1)=$ __2___.