If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?
Question:
If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?
Solution:
We know that
$f: R \rightarrow[-1,1]$ and $g: R \rightarrow R$
Clearly, the range of $f$ is a subset of the domain of $g$.
gof $: R \rightarrow R$
$(g o f)(x)=g(f(x))$
$=g(\sin x)$
$=2 \sin x$
Clearly, the range of $g$ is a subset of the domain of $f$.
$f o g: R \rightarrow R$
So, $(f o g)(x)=f(g(x))$
$=f(2 x)$
$=\sin (2 x)$
Clearly, fog