If f (x) is differentiable at x = c,

Question:

If $f(x)$ is differentiable at $x=c$, then write the value of $\lim _{x \rightarrow c} f(x)$.

Solution:

Given: $f(x)$ is differentiable at $x=c$. Then,

$\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists finitely.

or, $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)$

Consider,

$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left[\left\{\frac{f(x)-f(c)}{x-c}\right\}(x-c)+f(c)\right]$

$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left[\left\{\frac{f(x)-f(c)}{x-c}\right\}(x-c)\right]+f(c)$

$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left\{\frac{f(x)-f(c)}{x-c}\right\} \lim _{x \rightarrow c}(x-c)+f(c)$

 

$\lim _{x \rightarrow c} f(x)=f^{\prime}(c) \times 0+f(c)=f(c)$

Leave a comment