If $f(x)= \begin{cases}|x|+1, & x<0 \\ 0, & x=0 \\ |x|-1, & x>0\end{cases}$
For what value (s) of a does $\lim _{x \rightarrow a} f(x)$ exists?
The given function is
$f(x)= \begin{cases}|x|+1, & x<0 \\ 0, & x=0 \\ |x|-1, & x>0\end{cases}$
When $a=0$,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(|x|+1)$
$=\lim _{x \rightarrow 0}(-x+1) \quad[$ If $x<0,|x|=-x]$
$=-0+1$
$=1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(|x|-1)$
$=\lim _{x \rightarrow 0}(x-1) \quad[$ If $x>0,|x|=x]$
$=0-1$
$=-1$
Here, it is observed that $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$.
$\therefore \lim _{x \rightarrow 0} f(x)$ does not exist.
When $a<0$,
$\lim _{x \rightarrow d} f(x)=\lim _{x \rightarrow 0^{-}}(|x|+1)$
$=\lim _{x \rightarrow a}(-x+1) \quad[x
$=-a+1$
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}}(|x|+1)$
$=\lim _{x \rightarrow a}(x-1) \quad[0
$=a-1$
$\therefore \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=a-1$
Thus, $\lim _{x \rightarrow a} f(x)$ exists for all $a \neq 0$.