If f(x) = cos

Question:

If $f(x)=\cos \left(\log _{e} x\right)$, then $f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)-\frac{1}{2}\left\{f(x y)+f\left(\frac{x}{y}\right)\right\}$ is equal to

(a) cos (x − y)

(b) log (cos (x − y))

(c) 1

(d) cos (x + y)

Solution:

Given:

$f(x)=\cos \left(\log _{e} x\right)$

$\Rightarrow f\left(\frac{1}{x}\right)=\cos \left(\log _{e}\left(\frac{1}{x}\right)\right)$

$\Rightarrow f\left(\frac{1}{x}\right)=\cos \left(-\log _{e}(x)\right)$

$\Rightarrow f\left(\frac{1}{x}\right)=\cos \left(\log _{e}(x)\right)$

Similarly,

$f\left(\frac{1}{y}\right)=\cos \left(\log _{e} y\right)$

Now,

$f(x y)=\cos \left(\log _{e} x y\right)=\cos \left(\log _{e} x+\log _{e} y\right)$

and

$f\left(\frac{x}{y}\right)=\cos \left(\log _{e} \frac{x}{y}\right)=\cos \left(\log _{e} x-\log _{e} y\right)$

$\Rightarrow f\left(\frac{x}{y}\right)+f(x y)=\cos \left(\log _{e} x-\log _{e} y\right)+\cos \left(\log _{e} x+\log _{e} y\right)$

$\Rightarrow f\left(\frac{x}{y}\right)+f(x y)=2 \cos \left(\log _{e} x\right) \cos \left(\log _{e} y\right)$

$\Rightarrow \frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]=\cos \left(\log _{e} x\right) \cos \left(\log _{e} y\right)$

$\Rightarrow f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)-\frac{1}{2}\left\{f(x y)+f\left(\frac{x}{y}\right)\right\}=\cos \left(\log _{e} x\right) \cos \left(\log _{e} y\right)-\cos \left(\log _{e} x\right) \cos \left(\log _{e} y\right)=0$

Disclaimer: The question in the book has some error, so none of the options are matching with the solution. The solution is created according to the question given in the book.

 

Leave a comment