If f(x) be defined on [−2, 2] and is given by f(x)

Question:

If $f(x)$ be defined on $[-2,2]$ and is given by $f(x)=\left\{\begin{array}{rr}-1, & -2 \leq x \leq 0 \\ x-1, & 0

Solution:

Given:

$f(x)= \begin{cases}-1, & -2 \leqslant x \leqslant 0 \\ x-1, & 0

Thus,

$g(x)=f(|x|)+|f(x)|$

$= \begin{cases}x-1+1, & -2 \leqslant x \leqslant 0 \\ x-1+(-x+1), & 0

$= \begin{cases}x, & -2 \leqslant x \leqslant 0 \\ 0, & 0

Leave a comment