If $l(x)=a x^{2}+b x+c$ has no real zeros and $a+b+c=0$, then
(a) $c=0$
(b) $c>0$
(c) $c<0$
(d) None of these
If $f(x)=a x^{2}+b x+c$ has no real zeros and $a+b+c<0$ then $c<0$
Hence, the correct choice is $(c)$
Leave a comment
All Study Material