If $f(x)$ and $g(x)$ are two polynomials such that the polynomial $\mathrm{P}(\mathrm{x})=f\left(\mathrm{x}^{3}\right)+\mathrm{xg}\left(\mathrm{x}^{3}\right)$ is divisible by $x^{2}+x+1$, then $P(1)$ is equal to_________
$\mathrm{P}(\mathrm{x})=f\left(\mathrm{x}^{3}\right)+\mathrm{xg}\left(\mathrm{x}^{3}\right)$
$\mathrm{P}(1)=f(1)+\mathrm{g}(1)$ ......(1)
Now $\mathrm{P}(\mathrm{x})$ is divisible by $\mathrm{x}^{2}+\mathrm{x}+1$
$\Rightarrow \mathrm{P}(\mathrm{x})=Q(\mathrm{x})\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$
roots of units
$\mathrm{P}(\mathrm{x})=f\left(\mathrm{x}^{3}\right)+\mathrm{xg}\left(\mathrm{x}^{3}\right)$
$\mathrm{P}(\mathrm{w})=f\left(\mathrm{w}^{3}\right)+\mathrm{wg}\left(\mathrm{w}^{3}\right)=0$
$f(1)+w g(1)=2$ ......(2)
$\mathrm{P}\left(\mathrm{w}^{2}\right)=f\left(\mathrm{w}^{6}\right)+\mathrm{w}^{2} \mathrm{~g}\left(\mathrm{w}^{6}\right)=0$
$f(1)+w^{2} g(1)=0$ ......(3)
$(2)+(3)$
$\Rightarrow 2 f(1)+\left(w+w^{2}\right) g(1)=0$
$2 f(1)=g(1)$ .....(4)
$(2)-(3)$
$\Rightarrow\left(w-w^{2}\right) g(1)=0$
$\mathrm{g}(1)=0=f(1)$ from (4)
from (1) $\mathrm{P}(1)=f(1)+\mathrm{g}(1)=0$