If f(x)

Question:

If $f(x)=\frac{x+1}{x-1}$, show that $f[f[(x)]]=x$

Solution:

Given:

$f(x)=\frac{x+1}{x-1}$

Therefore,

$f[f\{(x)\}]=f\left(\frac{x+1}{x-1}\right)$

$=\frac{\left(\frac{x+1}{x-1}\right)+1}{\left(\frac{x+1}{x-1}\right)-1}$

$=\frac{\frac{x+1+x-1}{x-1}}{\frac{x+1-x+1}{x-1}}=\frac{\frac{2 x}{x-1}}{\frac{2}{x-1}}=\frac{2 x}{2}=x$

Thus,

f {(x)}] = x

Hence proved.

Leave a comment