If f(x)

Question:

If $f(x)=\left\{\begin{array}{cl}\frac{1}{|x|} & ;|x| \geq 1 \\ a x^{2}+b & ;|x|<1\end{array}\right.$ is differentiable at every point of the domain, then the values of a and b are respectively:

  1. (1) $\frac{1}{2}, \frac{1}{2}$

  2. (2) $\frac{1}{2},-\frac{3}{2}$

  3. (3) $\frac{5}{2},-\frac{3}{2}$

  4. (4) $-\frac{1}{2}, \frac{3}{2}$


Correct Option: , 4

Solution:

$f(x)=\left\{\begin{array}{cc}\frac{1}{|x|}, & |x| \geq 1 \\ a x^{2}+b, & |x|<1\end{array}\right.$

at $x=1$ function must be continuous

So, $1=a+b \ldots$ (i)

differentiability at $x=1$

$\left(-\frac{1}{x^{2}}\right)_{x=1}=(2 a x)_{x=1}$

$\Rightarrow-1=2 \mathrm{a} \Rightarrow \mathrm{a}=-\frac{1}{2}$

$(1) \Rightarrow \mathrm{b}=1+\frac{1}{2}=\frac{3}{2}$

Leave a comment