If f(x) =

Question:

If $f(x)=\cos ^{2} x+\sec ^{2} x$, then

(a) f(x) < 1                            

(b) f(x) = 1                            

(c) 1 < f(x) < 2                             

(d) f(x) ≥ 2 

Solution:

$f(x)=\cos ^{2} x+\sec ^{2} x$

$=\cos ^{2} x+\sec ^{2} x-2 \cos x \sec x+2 \cos x \sec x$

$=(\sec x-\cos x)^{2}+2$

$\therefore f(x) \geq 2 \forall x \quad\left[(\sec x-\cos x)^{2} \geq 0 \forall x\right]$

Hence, the correct option is answer D.

Leave a comment