Question:
If f(x) = 4x − x2, x ∈ R, then write the value of f(a + 1) −f(a − 1).
Solution:
Given:
f(x) = 4x − x2, x ∈ R
Now,
$f(a+1)=4(a+1)-(a+1)^{2}$
$=4 a+4-\left(a^{2}+1+2 a\right)$
$=4 a+4-a^{2}-1-2 a$
$=2 a-a^{2}+3$
$f(a-1)=4(a-1)-(a-1)^{2}$
$=4 a-4-\left(a^{2}+1-2 a\right)$
$=4 a-4-a^{2}-1+2 a$
$=6 a-a^{2}-5$
Thus,
$f(a+1)-f(a-1)=\left(2 a-a^{2}+3\right)-\left(6 a-a^{2}-5\right)$
$=2 a-a^{2}+3-6 a+a^{2}+5$
$=8-4 a$
$=4(2-a)$