Question:
If $f(x)=\frac{2^{x}+2^{-x}}{2}$, then $f(x+y) f(x-y)$ is equal to
(a) $\frac{1}{2}[f(2 x)+f(2 y)]$
(b) $\frac{1}{2}[f(2 x)-f(2 y)]$
(c) $\frac{1}{4}[f(2 x)+f(2 y)]$
(d) $\frac{1}{4}[f(2 x)-f(2 y)]$
Solution:
(a) $\frac{1}{2}[f(2 x)+f(2 y)]$
Given:
$f(x)=\frac{2^{x}+2^{-x}}{2}$
Now,
$f(x+y) f(x-y)=\left(\frac{2^{x+y}+2^{-x-y}}{2}\right)\left(\frac{2^{x-y}+2^{-x+y}}{2}\right)$
$\Rightarrow f(x+y) f(x-y)=\frac{1}{4}\left(2^{2 x}+2^{-2 y}+2^{2 y}+2^{-2 x}\right)$
$\Rightarrow f(x+y) f(x-y)=\frac{1}{2}\left(\frac{2^{2 x}+2^{-2 x}}{2}+\frac{2^{2 y}+2^{-2 y}}{2}\right)$
$\Rightarrow f(x+y) f(x-y)=\frac{1}{2}[f(2 x)+f(2 y)]$