If f(x)=

Question:

If $f(x)=\frac{x}{x-1}=\frac{1}{y}$, then $f(y)=$ _____________ .

 

 

Solution:

$f(x)=\frac{x}{x-1}$

given $\frac{x}{x-1}=\frac{1}{y}$

$x y=x-1 \quad$ i.e $y=\frac{x-1}{x}$ 

i. e $f(y)=\frac{y}{y-1}$

$=\frac{\frac{x-1}{x}}{\frac{x-1}{x}-1}$

$=\frac{\frac{x-1}{x}}{\frac{x-1-x}{x}}$

$=\frac{x-1}{x} \times \frac{x}{-1}$

$=-(x-1)$

$\therefore f(y)=1-x$

Leave a comment