If f(x)=

Question:

If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$, then $f(g(x))$ is equal to

(a) $f(3 x)$

(b) $\{f(x)\}^{3}$

(c) $3 f(x)$

(d) $-f(x)$

 

Solution:

(c) $3 f(x)$

$f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$

Now,

$\frac{1+g(x)}{1-g(x)}=\frac{1+\frac{3 x+x^{3}}{1+3 x^{2}}}{1-\frac{3 x+x^{3}}{1+3 x^{2}}}$

$=\frac{1+3 x^{2}+3 x+x^{3}}{1+3 x^{2}-3 x-x^{3}}$

$=\frac{(1+x)^{3}}{(1-x)^{3}}$

Then, $f(g(x))=\log \left(\frac{1+g(x)}{1-g(x)}\right)$

$=\log \left(\frac{1+x}{1-x}\right)^{3}$

$=3 \log \left(\frac{1+x}{1-x}\right)$

$=3 f(x))$

Leave a comment