If f(t) = 4t2 − 3t + 6, find

Question:

If $f(t)=4 t^{2}-3 t+6$, find

(i) $f(0)$,

(ii) $f(4)$,

(iii) $f(-5)$.

Solution:

(i) $f(t)=4 t^{2}-3 t+6$

$\Rightarrow f(0)=\left(4 \times 0^{2}-3 \times 0+6\right)$

$=(0-0+6)$

$=6$

(ii) $f(t)=4 t^{2}-3 t+6$

$\Rightarrow f(4)=\left(4 \times 4^{2}-3 \times 4+6\right)$

$=(64-12+6)$

$=58$

(iii) $f(t)=4 t^{2}-3 t+6$

$\Rightarrow f(-5)=\left[4 \times(-5)^{2}-3 \times(-5)+6\right]$

$=(100+15+6)$

$=121$

 

Leave a comment