Question:
If f : R → R be defined by f(x) = x2 + 1, then find f−1 [17] and f−1 [−3].
Solution:
If $f: A \rightarrow B$ is such that $y \in B$, then $f^{-1}\{y\}=\{x \in A: f(x)=y\}$.
In other words, $f^{-1}\{y\}$ is the set of pre - images of $y$.
Let $f^{-1}\{17\}=x$.
Then, f (x) =17 .
$\Rightarrow x^{2}+1=17$
$\Rightarrow x^{2}=17-1=16$
$\Rightarrow x=\pm 4$
$\therefore f^{-1}\{17\}=\{-4,4\}$
Again,
let $f^{-1}\{-3\}=x$.
Then, $f(x)=-3$
$\Rightarrow x^{2}+1=-3$
$\Rightarrow x^{2}=-3-1=-4$
$\Rightarrow x=\sqrt{-4}$
Clearly, no solution is available in R.
So $f^{-1}\{-3\}=\Phi$.