If $f: Q \rightarrow Q, g: Q \rightarrow Q$ are two functions defined by $f(x)=2 x$ and $g(x)=x+2$, show that $f$ and $g$ are bijective maps. Verify that $(g \circ f)^{-1}=f^{-1}$ og $^{-1}$.
Injectivity of $f$.
Let $x$ and $y$ be two elements of domain $(Q)$, such that $f(x)=f(y)$
$\Rightarrow 2 x=2 y$
$\Rightarrow x=y$
So, $f$ is one-one.
Surjectivity of f:
Let y be in the co-domain (Q), such that f(x) = y.
$\Rightarrow 2 x=y$
$\Rightarrow x=\frac{y}{2} \in Q \quad$ (domain)
$\Rightarrow f$ is onto.
So, $f$ is a bijection and, hence, it is invertible.
Finding $f^{-1}$ :
Let $f^{-1}(x)=y \quad \ldots(1)$
$\Rightarrow x=f(y)$
$\Rightarrow x=2 y$
$\Rightarrow y=\frac{x}{2}$
So, $f^{-1}(x)=\frac{x}{2}$ (from (1))
Injectivity of $g$ :
Let $x$ and $y$ be two elements of domain $(Q)$, such that $g(x)=g(y)$
$\Rightarrow x+2=y+2$
$\Rightarrow x=y$
So, $g$ is one-one.
Surjectivity of g:
Let y be in the co domain (Q), such that g(x) = y.
$\Rightarrow x+2=y$
$\Rightarrow x=2-y \in Q \quad$ (domain)
$\Rightarrow g$ is onto.
So, $g$ is a bijection and, hence, it is invertible.
Finding $g^{-1}$ :
Let $g^{-1}(x)=y \quad \ldots(2)$
$\Rightarrow x=g(y)$
$\Rightarrow x=y+2$
$\Rightarrow y=x-2$
So, $g^{-1}(x)=x-2$ (From (2))
Verification of $(g \circ f)^{-1}=f^{-1} o g^{-1}$ :
$f(x)=2 x ; g(x)=x+2$
and $f^{-1}(x)=\frac{x}{2} ; g^{-1}(x)=x-2$
Now, $\left(f^{-1} o g^{-1}\right)(x)=f^{-1}\left(g^{-1}(x)\right)$
$\Rightarrow\left(f^{-1} o g^{-1}\right)(x)=f^{-1}(x-2)$
$\Rightarrow\left(f^{-1} o g^{-1}\right)(x)=\frac{x-2}{2} \quad \ldots(3)$
$(g o f)(x)=g(f(x))$
$=g(2 x)$
$=2 x+2$
Let $(g o f)^{-1}(x)=\mathrm{y} \ldots$
$x=(g o f)(y)$
$\Rightarrow x=2 y+2$
$\Rightarrow 2 y=x-2$
$\Rightarrow y=\frac{x-2}{2}$
$\Rightarrow(g o f)^{-1}(x)=\frac{x-2}{2} \quad[$ from (4) $\ldots(5)]$
From (3) and (5),
$(g o f)^{-1}=f^{-1} o g^{-1}$