Question:
If $f$ is defined by $f(x)=x^{2}$, find $f(2)$.
Solution:
Given: $f(x)=x^{2}$
We know a polynomial function is everywhere differentiable. Therefore $f(x)$ is differentiable at $x=2$.
$f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$\Rightarrow f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h}$
$\Rightarrow f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{\left(4+h^{2}+4 h\right)-4}{h}$
$\Rightarrow f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{h(h+4)}{h}$
$\Rightarrow f^{\prime}(2)=4$