Question:
If $f(f(x))=x+1$ for all $x \in R$ and if $f(0)=\frac{1}{2}$, then $f(1)=$ ____________.
Solution:
Given: $f(f(x))=x+1$ for all $x \in R$ and $f(0)=\frac{1}{2}$
$f(f(x))=x+1$
$\Rightarrow f(f(0))=0+1$
$\Rightarrow f\left(\frac{1}{2}\right)=1 \quad\left(\because f(0)=\frac{1}{2}\right) \quad \ldots(1)$
Now,
$f\left(f\left(\frac{1}{2}\right)\right)=\frac{1}{2}+1$
$\Rightarrow f(1)=\frac{1+2}{2} \quad\left(\because f\left(\frac{1}{2}\right)=1\right)$
$\Rightarrow f(1)=\frac{3}{2}$
Hence, $f(1)=\underline{\frac{3}{2}}$.