If $e^{\sin x}-e^{-\sin x}-4=0$, then $x=$
(a) 0
(b) $\sin ^{-1}\left\{\log _{\rho}(2-\sqrt{5})\right\}$
(c) 1
(d) none of these
(d) none of these
Given equation: $e^{\sin x}-e^{-\sin x}-4=0$
Let:
$e^{\sin x}=y$
Now,
$y-y^{-1}-4=0$
$\Rightarrow y^{2}-4 y-1=0$
$\therefore y=\frac{4 \pm \sqrt{16+4}}{2}$
$\Rightarrow y=\frac{4 \pm \sqrt{20}}{2}$
$\Rightarrow y=\frac{4 \pm 2 \sqrt{5}}{2}=2 \pm \sqrt{5}$
And,
$y=e^{\sin x}$
$y=e^{\sin x}$
$\Rightarrow e^{\sin x}=2 \pm \sqrt{5}$
Taking log on both sides, we get:
$\sin x=\log _{e}(2 \pm \sqrt{5})$
$\Rightarrow \sin x=\log _{e}(2+\sqrt{5})$ or $\sin x=\log _{e}(2-\sqrt{5})$
$\Rightarrow \sin x=\log _{e}(4.24)$ or $\sin x=\log _{e}(-0.24)$
$\log _{e}(4.24)>1$ and $\sin x$ cannot be greater than 1 .
In the other case, the $\log$ of negative term occur $s$, which is not defined.