If $\cot x(1+\sin x)=4 m$ and $\cot x(1-\sin x)=4 n$, prove that $\left(m^{2}+n^{2}\right)^{2}=m n$
Given :
$4 m=\cot x(1+\sin x)$ and $4 n=\cot x(1-\sin x)$
Multiplying both the equations:
$\Rightarrow 16 m n=\cot ^{2} x\left(1-\sin ^{2} x\right)$
$\Rightarrow 16 m n=\cot ^{2} x \cdot \cos ^{2} x$
$\Rightarrow m n=\frac{\cos ^{4} x}{16 \sin ^{2} x}$ ....(1)
Squaring the given equation :
$16 m^{2}=\cot ^{2} x(1+\sin x)^{2}$ and $16 n^{2}=\cot ^{2} x(1-\sin x)^{2}$
$\Rightarrow 16 m^{2}-16 n^{2}=\cot ^{2} x(4 \sin x)$
$\Rightarrow m^{2}-n^{2}=\frac{\cot ^{2} x \cdot \sin x}{4}$
Squaring both sides,
$\left(m^{2}-n^{2}\right)^{2}=\frac{\cot ^{4} x \cdot \sin ^{2} x}{16}$
$\Rightarrow\left(m^{2}-n^{2}\right)^{2}=\frac{\cos ^{4} x}{16 \sin ^{2} x}$ ....(2)
From $(1)$ and $(2):$
$\left(m^{2}-n^{2}\right)^{2}=m n$
Hence proved.