If $\cot \theta=\frac{3}{4}$, prove that $\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\frac{1}{\sqrt{7}}$
Given:
$\cot \theta=\frac{3}{4}$.....(1)
To prove:
$\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\frac{1}{\sqrt{7}}$
Now we know $\tan \theta$ is defined as follows
$\cot \theta=\frac{\text { Base side adjacent to } \angle \theta}{\text { Perpendicular side opposite to } \angle \theta}$.....(2)
Now by comparing equation (1) and (2)
We get,
Base side adjacent to $\angle \theta=3$
Perpendicular side opposite to $\angle \theta=4$
Therefore triangle representing angle $\theta$ is as shown below
Side AC is unknown and can be found using Pythagoras theorem
Therefore,
$A C^{2}=A B^{2}+B C^{2}$
Now by substituting the value of known sides from figure
We get,
$A C^{2}=4^{2}+3^{2}$
$=16+9$
$=25$
Now by taking square root on both sides
We get,
$A C=\sqrt{25}$
$=5$
Therefore Hypotenuse side AC = 5 …… (3)
Now we know, $\sin \theta$ is defined as follows
$\sin \theta=\frac{\text { Perpendicular side opposite to } \angle \theta}{\text { Hypotenuse }}$
Therefore from figure (a) and equation (3)
We get,
$\sin \theta=\frac{A B}{A C}$
$=\frac{4}{5}$
$\sin \theta=\frac{4}{5} \ldots \ldots$(4)
Now we know $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
Therefore by substituting the value of $\sin \theta$ from equation (4)
We get,
$\operatorname{cosec} \theta=\frac{1}{\frac{4}{5}}$
$=\frac{5}{4}$
Therefore,
$\operatorname{cosec} \theta=\frac{5}{4}$....(5)
Now we know, $\cos \theta$ is defined as follows
$\cos \theta=\frac{\text { Base side adjacent to } \angle \theta}{\text { Hypotenuse }}$
Therefore from figure (a) and equation (3)
We get,
$\cos \theta=\frac{B C}{A C}$
$=\frac{3}{5}$
$\cos \theta=\frac{3}{5} \ldots \ldots$(6)
Now we know $\sec \theta=\frac{1}{\cos \theta}$
Therefore by substituting the value of $\cos \theta$ from equation (6)
We get,
$\sec \theta=\frac{1}{\frac{3}{5}}$
$=\frac{5}{3}$
Therefore,
$\sec \theta=\frac{5}{3} \ldots \ldots(7)$
Now, in expression $\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}$, by substituting the value of $\operatorname{cosec} \theta$ and $\sec \theta$ from equation (6) and (7) respectively, we get,
$\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\sqrt{\frac{\frac{5}{3}-\frac{5}{4}}{\frac{5}{3}+\frac{5}{4}}}$
L.C.M of 3 and 4 is 12
Now by taking L.C.M in above expression
We get,
$\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=$\sqrt{\frac{\frac{5 \times 4}{3 \times 4}-\frac{5 \times 3}{4 \times 3}}{\frac{5 \times 4}{3 \times 4}+\frac{5 \times 3}{4 \times 3}}}$
$=\sqrt{\frac{\frac{20}{12}-\frac{15}{12}}{\frac{20}{12}+\frac{15}{12}}}$
$=\sqrt{\frac{\frac{20-15}{12}}{\frac{20+15}{12}}}$
$=\sqrt{\frac{\frac{5}{12}}{\frac{35}{12}}}$
$=\sqrt{\frac{5}{12} \times \frac{12}{35}}$
Now 12 gets cancelled and we get,
$\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\sqrt{\frac{5}{35}}$
Now $35=5 \times 7$
Therefore,
$\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\sqrt{\frac{5}{5 \times 7}}$
Now 5 gets cancelled and we get,
$\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\sqrt{\frac{1}{7}}$
$=\frac{1}{\sqrt{7}}$
Therefore, it is proved that $\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\frac{1}{\sqrt{7}}$